3 research outputs found

    A Clustering Framework for Monitoring Circadian Rhythm in Structural Dynamics in Plants From Terrestrial Laser Scanning Time Series

    Get PDF
    Terrestrial Laser Scanning (TLS) can be used to monitor plant dynamics with a frequency of several times per hour and with sub-centimeter accuracy, regardless of external lighting conditions. TLS point cloud time series measured at short intervals produce large quantities of data requiring fast processing techniques. These must be robust to the noise inherent in point clouds. This study presents a general framework for monitoring circadian rhythm in plant movements from TLS time series. Framework performance was evaluated using TLS time series collected from two Norway maples (Acer platanoides) and a control target, a lamppost. The results showed that the processing framework presented can capture a plant's circadian rhythm in crown and branches down to a spatial resolution of 1 cm. The largest movements in both Norway maples were observed before sunrise and at their crowns' outer edges. The individual cluster movements were up to 0.17 m (99th percentile) for the taller Norway maple and up to 0.11 m (99th percentile) for the smaller tree from their initial positions before sunset

    Soya Yield Prediction on a Within-Field Scale Using Machine Learning Models Trained on Sentinel-2 and Soil Data

    No full text
    Agriculture is the backbone and the main sector of the industry for many countries in the world. Assessing crop yields is key to optimising on-field decisions and defining sustainable agricultural strategies. Remote sensing applications have greatly enhanced our ability to monitor and manage farming operation. The main objective of this research was to evaluate machine learning system for within-field soya yield prediction trained on Sentinel-2 multispectral images and soil parameters. Multispectral images used in the study came from ESA’s Sentinel-2 satellites. A total of 3 cloud-free Sentinel-2 multispectral images per year from specific periods of vegetation were used to obtain the time-series necessary for crop yield prediction. Yield monitor data were collected in three crop seasons (2018, 2019 and 2020) from a number of farms located in Upper Austria. The ground-truth database consisted of information about the location of the fields and crop yield monitor data on 411 ha of farmland. A novel method, namely the Polygon-Pixel Interpolation, for optimal fitting yield monitor data with satellite images is introduced. Several machine learning algorithms, such as Multiple Linear Regression, Support Vector Machine, eXtreme Gradient Boosting, Stochastic Gradient Descent and Random Forest, were compared for their performance in soya yield prediction. Among the tested machine learning algorithms, Stochastic Gradient Descent regression model performed better than the others, with a mean absolute error of 4.36 kg/pixel (0.436 t/ha) and a correlation coefficient of 0.83%

    Toward utilizing multitemporal multispectral airborne laser scanning, Sentinel-2, and mobile laser scanning in map updating

    No full text
    The rapid development of remote sensing technologies provides interesting possibilities for the further development of nationwide mapping procedures that are currently based mainly on passive aerial images. In particular, we assume that there is a large undiscovered potential in multitemporal airborne laser scanning (ALS) for topographic mapping. In this study, automated change detection from multitemporal multispectral ALS data was tested for the first time. The results showed that direct comparisons between height and intensity data from different dates reveal even small changes related to the development of a suburban area. A major challenge in future work is to link the changes with objects that are interesting in map production. In order to effectively utilize multisource remotely sensed data in mapping in the future, we also investigated the potential of satellite images and ground-based data to complement multispectral ALS. A method for continuous change monitoring from a time series of Sentinel-2 satellite images was developed and tested. Finally, a high-density point cloud was acquired with terrestrial mobile laser scanning and automatically classified into four classes. The results were compared with the ALS data, and the possible roles of the different data sources in a future map updating process were discussed
    corecore